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Abstract Hollow particle filled composites, called syn-

tactic foams, are used in weight sensitive structural

applications in this paper. In this paper, homogenization

techniques are used to derive estimates for thermal

conductivity of hollow particle filled composites. The

microstructure is modeled as a three-phase system consist-

ing of an air void, a shell surrounding the air void, and a

matrix material. The model is applicable to composites

containing coated solid particles in a matrix material and can

be further expanded to include additional coating layers.

The model is successful in predicting thermal conductivity

of composites containing up to 52% particles by volume.

Theoretical results for thermal conductivity are validated

with the results obtained from finite element analysis and are

found to be in close agreement with them. A simplified

approximation of the theoretical model applicable to thin

shells is also validated and found to be in good agreement

with the corresponding finite element results. The model is

applicable to a wide variety of particulate composite mate-

rials and will help in tailoring the properties of particulate

composites as per the requirements of the application.

Introduction

Enhancement in the understanding of porous materials,

such as foams, has resulted in their increased applications

in ship, aircraft, and spacecraft structures. A special class

of porous materials, called syntactic foams, is synthesized

by embedding hollow particles in matrix materials [1, 2].

The presence of porosity inside thin stiff shells of hollow

particles results in higher specific stiffness and strength of

these composites compared to open-cell and closed-cell

foams containing gas porosity in the matrix material.

Therefore, syntactic foams are considered very promising

lightweight materials in load bearing applications. The

hollow particles, called microballoons, are generally made

of glass [3], carbon [4], or polymers [5]. Various types of

polymeric and metallic materials are widely used as

matrices [6–8]. Syntactic foams have been extensively

studied for mechanical properties and fracture character-

istics under compressive [8–10], tensile [11–14], dynamic

[15], and flexural [16, 17] loading conditions.

The use of syntactic foams in thermal insulation is

increasing in recent years since incorporation of air filled

hollow ceramic particles in polymeric or metallic matrix

results in lower thermal conductivity and higher dimensional

stability [18, 19]. Some of the pipes used in recovering oil

from ultra-deep oil wells have a structure of two concentric

pipes with syntactic foam filled in between for thermal insu-

lation and sealing. High temperature variants of syntactic

foams have potential to be used in the spacecraft thermal

protection systems. These applications require understanding

of thermal conductivity in addition to mechanical properties.

While studies on mechanical properties of syntactic foams are

readily available, studies on thermal properties of these

materials are relatively scarce [18]. Considering the recent

and potential high temperature applications of syntactic
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foams, it is required that thermal properties of these materials

are characterized. Rigorous mathematical models that can

correlate the thermal conductivity of syntactic foams with the

properties and volume fractions of the constituent materials

are required.

One of the most frequently used methods to derive

effective thermal properties of particulate composites is the

Rayleigh’s method [20]. This method has been used to find

thermal properties of two-phase composites where spherical

particles are dispersed in simple cubic [21], body centered

cubic, and face centered cubic [22] lattice arrangements in a

matrix resin. This method can incorporate the particle-

matrix interfacial conditions and has been used to study the

effects of imperfect interfaces on the effective conductivity

of two-phase composites [23]. The method has also been

used to analyze the effective thermal conductivity of three-

phase composite materials comprising periodic arrays of

coated cylinders [24] and coated spheres [25].

As an alternative to Rayleigh’s method, homogenization

techniques can be used to characterize the effective thermal

properties of composite materials. These techniques have

been applied to the estimation of effective elastic constants

of composite materials [26–28]. Homogenization tech-

niques are considered to be more theoretically grounded

than Rayleigh’s method and more versatile in the analysis

of complicated microstructures. Using homogenization

techniques the determination of the effective properties

reduces to the solution of a representative thermal problem

defined on a unit cell that characterizes the composite’s

microstructure.

Both the homogenization technique and the Rayleigh’s

method assume a periodic structure for the particulate

composite. Even if particulate composites are generally not

periodic, results from these method can be used to build

differential schemes similar to those presented in [29, 30]

for analyzing mechanical properties of solid particles filled

composites with random microstructures and high volume

fraction of particles. Unlike empirical models as those

summarized in [18, 31], the homogenization technique

provides a mathematical exact expression for the thermal

conductivity of particulate composites whose inclusions

are periodically arranged in the matrix material.

The present research is focused on developing an ana-

lytical model to determine the thermal conductivity of

syntactic foams using homogenization techniques. Syn-

tactic foams are modeled as a three-phase microstructure

where microballoons are regarded as an inner sphere (air)

enclosed by a glass shell, which is embedded in a matrix

material. Hence, the model is expected to be applicable for

a wide variety of particulate composites apart from syn-

tactic foams, especially those containing solid particles

coated with a second phase and then embedded in a matrix

material. The proposed model builds on the mathematical

tools developed in [32] for analyzing solid particles filled

composites. The theoretical findings are extensively vali-

dated with finite element analysis (FEA) results obtained

by solving a tractable unit cell problem that stems from a

thorough analysis of the system’s governing equations. The

commercial FEA program Ansys is used for the analysis.

Several published studies have used FEA methods to

determine the thermal conductivity of hollow particles [33]

and particulate composites [34, 35].

Problem statement

A typical representative microstructure of syntactic foams

is shown in Fig. 1a, where glass microballoons can be

seen dispersed in vinyl ester resin matrix. One of the

broken microballoons is shown in Fig. 1b, that illustrates

Fig. 1 a Microstructure of a syntactic foam containing 60 vol% of

glass microballoons in a vinyl ester resin matrix and b a broken

microballoon showing an air void enclosed within the thin shell
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the presence of a large air void inside a thin shell of glass.

Typically, microballoons of diameter 10–200 lm and wall

thickness of 0.5–2 lm are used in syntactic foams.

Consistent with the microstructure shown in Fig. 1b, the

effective thermal conductivity of particulate composites,

comprised of an array of identical spheres embedded in a

matrix material, is studied. It is assumed that the materials

constituting the spherical inclusions, and the matrix are

homogenous and isotropic. It is further assumed that the

inclusions are dispersed in the matrix in a periodic simple

cubic arrangement.

The geometry of the problem, in dimensionless coordi-

nates, is reported in Fig. 2. The distance between the

centers of adjacent inclusions is D. The outer radius and

shell thickness of inclusions are aD and tD, respectively.

The parameters a and t are dimensionless quantities that

measure the interdistance between adjacent particles and

their shell thickness, respectively. The thermal conductiv-

ity of the matrix, of the shell, and of the core are km, ks, and

kc, respectively. Relative conductivities of the shell and of

the core are defined as eks ¼ ks=km and ekc ¼ kc=km,

respectively. The notations and analytical framework used

in what follows are consistent with those used in [32] for

solid particle filled composites.

Here and henceforth, E is the three-dimensional

Euclidean point ambient space, e1, e2, and e3 are orthog-

onal unit vectors, o is a fixed origin in E, (y1, y2, y3) define a

cartesian coordinate system and y = y1e1 ? y2e2 ? y3e3,

and (q, h, /) define a spherical coordinate system. |y| refers

to the Euclidean norm of y, that is, jyj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2
1 þ y2

2 þ y2
3

p

.

Y = (-1/2, 1/2)3 denotes the representative unit cell. The

domain Xr is the sphere of radius r centered at the origin o.

The volume of the sphere Xr is called fr, and fr = 4 p r3/3.

The domain Xr2;r1
¼ Xr2

nXr1
is the hollow sphere of outer

radius r2 and inner radius r1 centered at the origin.

The outward unit normal to a regular surface S at y is

called n(y). For the spherical surface oXr; mðyÞ is the out-

ward unit normal, that is, m = y/r with y [ Xr.

Governing equations

The unit cell problem consists in finding weak solutions

vj 2 H1
#ðYÞ; j ¼ 1; 2; 3 such that

Z

Y

ekðyÞruðyÞ � ðej þrvjðyÞÞ dV ¼ 0 ð1Þ

for every u 2 H1
#ðYÞ, where ekðyÞ is the relative conduc-

tivity with respect to the matrix material, see for example

[28]. That is, ekðyÞ ¼ 1 if y 2 YnXa; ekðyÞ ¼ eks if y 2 Xa;a�t,

and ekðyÞ ¼ ekc if y 2 Xa�t. Note that vj is uniquely deter-

mined up to a constant. Due to the symmetries of the

problem, it is sufficient to solve (1) for one value of the

index j. Here, j = 3 is selected and v3 = w is set.

A strong formulation of the problem can be derived

from (1) through multiple integration by parts

Mw ¼ 0 y 2 YnðoXa [ oXa�tÞ ð2aÞ

wðyþÞ ¼ wðy�Þ y 2 oXa ð2bÞ

wðyþÞ ¼ wðy�Þ y 2 oXa�t ð2cÞ
eksðm � e3 þ m � rwðyþÞÞ ¼ ekcðm � e3 þ m � rwðy�ÞÞ

y 2 oXa�t
ð2dÞ

m � e3 þ m � rwðyþÞ ¼ eksðm � e3 þ m � rwðy�ÞÞ y 2 oXa

ð2eÞ
wðyÞ ¼ wðyþ eiÞ i ¼ 1; 2; 3 y 2 oY ð2fÞ

Effective conductivity

Once the solution of the unit cell problem in Eq. 1 is

determined, the relative effective conductivity is found

through [28]

ekh ¼ hekðyÞi þ ekðyÞ owðyÞ
oy3

� �

ð3Þ

where the spatial average of a Y-periodic function F is

defined as

hFðyÞi ¼
Z

Y

FðyÞ dV ð4Þ

By using Green’s theorem, the second summand in (3) can

be transformed into a more manageable summation of

surface integralsFig. 2 Geometry of the unit cell problem
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ekðyÞ owðyÞ
oy3

� �

¼
Z

YnXa

owðyÞ
oy3

dV þ eks

Z

Xa;a�t

owðyÞ
oy3

dV

þ ekc

Z

Xa�t

owðyÞ
oy3

dV

¼
Z

oY

wðyÞnðyÞ � e3 dA

þ ðeks � 1Þ
Z

oXa

wðyÞmðyÞ � e3 dA

þ ðekc � eksÞ
Z

oXa�t

wðyÞmðyÞ � e3 dA ð5Þ

Due to the Y-periodicity of the solution, the first summand

in the right hand side of (5) vanishes, and the effective

relative conductivity (3) can be expressed as

ekh ¼ð1� faÞ þ eksðfa � fa�tÞ þ ekcfa�t

þ ðeks � 1Þ
Z

oXa

wðyÞmðyÞ � e3 dA

þ ðekc � eksÞ
Z

oXa�t

wðyÞmðyÞ � e3 dA ð6Þ

Rigorous bounds

The effective relative thermal conductivity of the consid-

ered particulate composite can be bounded using the two-

point bound derived by Hashin and Shtrikman, see for

example [28]. The bounds take into consideration only the

volume fractions of the different constituents and read

fa�t

2ekmin þ ekc

þ fa � fa�t

2ekmin þ eks

þ 1� fa

2ekmin þ 1

� ��1

�2ekmin� ekh

� fa�t

2ekmax þ ekc

þ fa � fa�t

2ekmax þ eks

þ 1� fa

2ekmax þ 1

� ��1

�2ekmax

ð7Þ

where ekmax ¼ maxf1; ekc; eksg and ekmin ¼ minf1; ekc; eksg.
The theoretically calculated thermal conductivity values

will be compared with these bounds for conformity.

Solution of the unit-cell problem

A closed-form solution of the unit cell problem is deter-

mined by building on the analytical solution determined in

[32] for the case of solid spheres. The solution w(y) is

expressed as a series expansion of solutions of the Laplace

equation. The series coefficients are determined by

imposing conditions (2c), (2d), and (2e).

Series solution

The regular solutions to the Laplace equation in spherical

coordinates are called vn, while the solutions that are

singular at the origin are called un. The expressions of un

and vn are given in the appendix as Eqs. 39a and 39b,

respectively. Here, n is used as a multi-index and set as

n ¼ ðr; l;mÞ, where r takes values in the set {e,o}, l 2 Z
þ,

and m ¼ 0; . . .; l; l� 1. The set of all admissible multi-

indices n is called I . Further, a subset of indices is defined

as I ¼ fn 2 I : r ¼ e; l is even, and m is odd}.

Due to the symmetry of the problem, the solution w is

even in y1 and y2, while it is odd in y3. Thus, solutions of

the following form are sought

wðyÞ ¼
X

n2I

an

X

i2Z3

ðunðyþ tiÞ � /iðyÞdn;e01Þ � faae01ve01ðyÞ

y 2 YnXa ð8aÞ

wðyÞ ¼
X

n2I

ðbnvnðyÞ þ cnunðyÞÞ y 2 Xa;a�t ð8bÞ

wðyÞ ¼
X

n2I

dnvnðyÞ y 2 Xa�t ð8cÞ

where ti = i1e1 ? i2e2 ? i3e3 with ði1; i2; i3Þ 2 Z
3 and

/iðyÞ ¼ ð1� di;ð000ÞÞðue01ðtiÞ þ y � rue01ðtiÞÞ ð9Þ

It is noted that both the summation over the lattice structure

in (8a) and the term �faae01ve01ðyÞ / y3 are needed for

imposing the periodicity condition (2f), see [32]. In addition,

the ad-hoc summation for the term e01 is needed for assuring

the absolute convergence of the infinite summation on i for

every y2 Y . Indeed, ue01 = O(|i|) and the extra term /i(y)

guarantees that all the summands in the infinite summation

with respect to i have at least the decay rate |i|4. Since the

infinite summation on i in (8a) is absolutely convergent, its

sum may be computed by squares [36]. Therefore, by

accounting for the properties of ue01, see [32], it is found that

wðyÞ ¼
X

n2I

an lim
R!1

X

i2Z3

jtij �R

unðyþ tiÞ � faae01ve01ðyÞ ð10Þ

In addition, by using the translation properties of un, see

[32], Eq. 10 can be further simplified into

wðyÞ ¼
X

n2I

an

X

n02I
ðdn;n0un0 ðyÞ þ Snn0vn0 Þ � faae01ve01ðyÞ

ð11Þ

where the quantity Sn0n is defined by

Snn0 ¼ lim
R!1

X

ð0;0;0Þ6¼i2Z3

jtij �R

Pnn0 ðyþ tiÞ ð12Þ

and Pnn0 is the so-called translation matrix for singular

solutions of the Laplace equation [32].

Once the coefficients an, bn, cn, and dn in (8) are

determined, the effective relative thermal conductivity is
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obtained through Eq. 6. In particular, by substituting

Eq. 8b into 6, by applying Green’s theorem, by using

Eqs. 42a and 42b, and by noting that mðyÞ � e3 ¼
cosh ¼

ffiffiffiffiffiffiffiffiffiffi

4p=3
p

Ye01, it can be found that

ekh ¼ð1� faÞ þ eksðfa � fa�tÞ þ ekcfa�t þ
1

a

ffiffiffiffiffiffi

3

4p

r

ðbe01ðfaðeks � 1Þ þ fa�tðekc � eksÞÞ þ ce01faðekc � 1ÞÞ
ð13Þ

Determination of the series coefficients

In order to determine the numerical values of the coeffi-

cients an, bn, cn, and dn for n [ I appearing in (8), the

interface and boundary conditions (2b), (2c), (2d), and (2e)

are imposed to (8b), (8c), and (11), and the orthogonality of

the spherical harmonics on the unit sphere is used.

Initially, condition (2b) is analyzed. Using Eqs. 39a and

39b in Eq. 2b, one obtains

a� t

a

� �l

bn þ
a

a� t

� �lþ1

cn ¼
a� t

a

� �l

dn ð14Þ

Using Eqs. 42a and 42b in Eq. 2d, it can be found that

eks l
ða� tÞl�1

al
bn � ðlþ 1Þ alþ1

ða� tÞlþ2
cn þ

ffiffiffiffiffiffi

4p
3

r

dn;e01

 !

¼ ekc l
ða� tÞl�1

al
dn þ

ffiffiffiffiffiffi

4p
3

r

dn;e01

 !

ð15Þ

Now, the continuity condition (2c) is applied. From Eq. 2c,

it can be found that

bn þ cn ¼ an þ
X

n02I

Sn0nan0 � faae01dn;e01 ð16Þ

Finally, the interface condition (2e) is applied to obtain

eks

l

a
bn �

lþ 1

a
cn þ

ffiffiffiffiffiffi

4p
3

r

dn;e01

 !

¼ � lþ 1

a
an þ

l

a

X

n02I

Sn0nan0 �
fa
a

ae01dn;e01 þ
ffiffiffiffiffiffi

4p
3

r

dn;e01

ð17Þ

Solving for dn in (14) provides

dn ¼ bn þ
a

a� t

� �2lþ1

ð18Þ

Substituting (18) into (15) and solving for cn, it can be

found that

cn ¼ mðlÞbn þ a

ffiffiffiffiffiffi

4p
3

r

mð1Þdn;e01 ð19Þ

where

mðlÞ ¼ lð1� ekc=eksÞ
lþ 1þ ekc=eks

a� t

a

� �2lþ1

ð20Þ

Substituting (19) into (16) and solving for bn results in

bn ¼
1

1þ mðlÞ

an þ
X

n02I

Sn0nan0 � faae01dn;e01 þ a

ffiffiffiffiffiffi

4p
3

r

mð1Þdn;e01

 !

ð21Þ

Substituting (19) into (17) results in

eksðl� ðlþ 1ÞmðlÞÞbn þ ðlþ 1Þan � l
X

n02I

Sn0nan0

þ faae01dn;e01 ¼ a

ffiffiffiffiffiffi

4p
3

r

1� eks þ 2eksmð1Þ
� �

dn;e01 ð22Þ

By substituting (21) into (22), an infinite set of equations is

determined for the coefficients an
X

n02I

Mn0nan0 ¼ gdn;e01 ð23Þ

where the infinite coefficient matrix Mn0n and the load g are

defined by

Mn0n¼ eks

l�ðlþ1ÞmðlÞ
1þmðlÞ ð1� fadn;e01Þþ lþ1þ fadn;e01

� �

dn0n

þ eks

l�ðlþ1ÞmðlÞ
1þmðlÞ � l

� �

Sn0n ð24Þ

and

g ¼ a

ffiffiffiffiffiffi

4p
3

r

1� eks þ 2eksmð1Þ
� �

þ a

ffiffiffiffiffiffi

4p
3

r

mð1Þeks

1� 2mð1Þ
1þ mð1Þ

ð25Þ

It is noted that for solid spheres, that is, t = 0, the system

of equations (23) coincides with the governing equations in

[32].

By solving Eq. 23 for an and by substituting into (21)

and (19), we find the coefficients be01 and ce01 whose

values determine the effective relative conductivity of the

particulate composite as stated in Eq. 13.

Asymptotic solution

A closed form expression for the effective conductivity for

small a, therefore moderately small volume fractions, is

now developed. As shown in [32], the quantity Sn0n defining

the infinite matrix in (24) satisfies
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Sn0n ¼ Oðal0þlþ1Þ ð26Þ

In addition, due to the lattice symmetry Se01e01 =

Se01e23 = Se23e01 = 0. Therefore, the lowest order

contribution is provided only by the two terms Se03e01

and Se01e03 that contribute as O(a5). As a consequence,

neglecting terms of the order O(a7) the system (23) can be

written as

l11ae01 þ l31Se03e01ae03 ¼ g ð27aÞ
l13Se01e03ae01 þ l33ae03 ¼ 0 ð27bÞ

where

l11 ¼ eksð1� faÞ
1� 2mð1Þ
1þ mð1Þ þ 2þ fa ð28aÞ

l31 ¼ eks

1� 2mð1Þ
1þ mð1Þ � 1 ð28bÞ

l13 ¼ eks

3� 4mð3Þ
1þ mð3Þ � 3 ð28cÞ

l33 ¼ eks

3� 4mð3Þ
1þ mð3Þ þ 4 ð28dÞ

The approximate solution of the linear system described

by Eqs. 27a and 27b is

ae01 ’
1

l11

þ l31l13

l2
11l33

Se03e01Se01e03

� �

g ð29aÞ

ae03 ’ �
l13

l11l33

Se01e03g ð29bÞ

Consequently from Eqs. 19 and 21, the coefficients be01

and ce01 are

be01 ’
1

1þ mð1Þ
gð1� faÞ

l11

� a

ffiffiffiffiffiffi

4p
3

r

mð1Þ
 !

þ 1

1þ mð1Þ

g
l13

l2
11l33

ðl31ð1� faÞ � l11ÞSe03e01Se01e03

� �

ð30Þ

and

ce01 ’
mð1Þ

1þ mð1Þ
gð1� faÞ

l11

þ a

ffiffiffiffiffiffi

4p
3

r
 !

þ mð1Þ
1þ mð1Þ g

l13

l2
11l33

ðl31ð1� faÞ � l11ÞSe03e01Se01e03

� �

ð31Þ

The product Se03e01Se01e03 has been evaluated numerically

in [32] and equals approximately 155a10. Therefore, by

replacing the above values for be01 and ce01 in Eq. 13 we

find the effective relative thermal conductivity of the hol-

low particle filled composite. The truncation error is of the

order of a15.

For the case of relatively low volume fractions of mi-

croballoons, the contribution due to Se03e01Se01e03 can be

discarded obtaining an estimate whose truncation error is

of the order of a10. In this case, the expression of the

effective conductivity simplifies to

For two-phase composites, that is when t = 0, Eq. 32

coincides with the well-known Maxwell–Garnett formula,

see for example [28]. For thin shells, a further approxi-

mation may be performed to obtain a manageable and

meaningful expression by linearizing the approximate

effective relative conductivity in Eq. 32 for small wall

thicknesses t. In this case, the effective relative conduc-

tivity Eq. 13 becomes

ekh ¼ 1� 3fað1� ~kcÞ
2þ ~kc � fað~kc � 1Þ

þ 9fað2~k2
s � ~kc

~ks � ~k2
cÞ

~ksð2þ fa þ ~kcð1� faÞÞ2
t

a

ð33Þ

The first two summands in Eq. 33 correspond to the

effective relative conductivity of a two-phase composite

with solid inclusions of radius a and relative conductivity
~kc computed with the Maxwell–Garnett formula. The last

summand in Eq. 33 corrects the Maxwell–Garnett formula

to account for the presence of the thin shells.

Finite element analysis

Problem formulation

For the FEA of the unit cell problem described in Problem

statement section, it is convenient to transform the original

formulation in Eq. 1 into a simpler formulation, where

periodicity conditions and interface conditions are removed.

Note that, due to the symmetry of the problem, the

periodicity condition (2f) can be replaced by the mixed

boundary conditions

ekh ¼ 1�
3fa ð1� ~ksÞð~kc þ 2~ksÞ þ ð~ks � ~kcÞð1þ 2~ksÞ fa�t

fa

� �

ð~kc þ 2~ksÞð2þ ~ks � fað~ks � 1ÞÞ þ ð~ks � ~kcÞð2� 2~ks þ fað1þ 2~ksÞÞ fa�t

fa

ð32Þ

J Mater Sci (2009) 44:1540–1550 1545

123



ow
oy1

ð�1=2e1Þ ¼ 0 ð34aÞ

ow
oy2

ð�1=2e2Þ ¼ 0 ð34bÞ

wð�1=2e3Þ ¼ 0 ð34cÞ

In addition, due to the linearity of the problem, we can

express the solution w(y) as the summation of a particular

solution wp(y) of the Laplace equation in the unit cell,

satisfying conditions (2b), (2c), (2d), and (2e) and a function

W(y) solving the following mixed boundary value problem

MWðyÞ ¼ 0 y 2 YnðoXa�t [ oXa�tÞ ð35aÞ

WðyþÞ ¼ Wðy�Þ y 2 oXa ð35bÞ

WðyþÞ ¼ Wðy�Þ y 2 oXa�t ð35cÞ
eksm � rWðyþÞ ¼ ekcm � rWðy�Þ y 2 oXa�t ð35dÞ

m � rWðyþÞ ¼ eksm � rWðy�Þ y 2 oXa ð35eÞ
oW
oy1

ð�1=2e1Þ ¼ �
owp

oy1

ð�1=2e1Þ ð35fÞ

oW
oy2

ð�1=2e2Þ ¼ �
owp

oy2

ð�1=2e2Þ ð35gÞ

Wð�1=2e3Þ ¼ �wpð�1=2e3Þ ð35hÞ

A particular solution of the problem is

wpðyÞ ¼ �a

ffiffiffiffiffiffi

4p
3

r

ve01ðyÞ � �y3 ð36Þ

Therefore, from Eqs. 35f, 35g, and 35h the mixed

boundary conditions required to determine W are

oW
oy1

ð�1=2e1Þ ¼ 0 ð37aÞ

oW
oy2

ð�1=2e2Þ ¼ 0 ð37bÞ

Wð�1=2e3Þ ¼ �1=2 ð37cÞ

These boundary conditions correspond to leaving four

surfaces of the unit cell free and to imposing a constant

temperature on the remaining two surfaces. Specifically,

constant temperatures of equal value and opposite sign are

imposed on the two surfaces orthogonal to e3 that induce a

thermal gradient in the unit cell.

Once the solution field W is determined using the FEA,

the effective thermal conductivity is found by replacing

w = wp ? W into Eq. 6, yielding

ekh ¼ 1þ ðeks � 1Þ
Z

oXa

WðyÞmðyÞ � e3 dA

þ ðekc � eksÞ
Z

oXa�t

WðyÞmðyÞ � e3 dA ð38Þ

The set of equations (35) with boundary conditions (37)

can be solved using any commercial finite element code,

and the effective relative conductivity can be estimated

using Eq. 38.

Computer implementation

The finite element solution of the set of equations (35) with

boundary conditions (37) is performed using Ansys 11.0.

The analysis is conducted on the three-dimensional unit

cell displayed in Fig. 2. The unit cell consists of a spherical

core (air) surrounded by a concentric spherical shell

(microballoon) embedded in a unit cube of the matrix

material.

Symmetry conditions are used to simplify the FEA to

only one quarter of the unit cell. The finite element model

of the unit cell is shown in Fig. 3. The center of the shell

and core as well as the cube are set at the origin of the

Fig. 3 a The three-phase composite microstructure and b the meshed

model used for FEA
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coordinate system. In the unit cell problem, the outer radius

of the microballoon, a, is varied between 0 and 0.499. The

limiting case is taken as 0.499 because at 0.5 the radius of

the microballoon becomes equal to the half-length of the

unit cell and the matrix becomes discontinuous. The matrix

resin is assumed to be vinyl ester and microballoons are

assumed to be made of borosilicate glass. The thermal

conductivities of the matrix polymer, microballoons, and

air are assumed to be 0.25, 1.1, and 0.01 W/mK, respec-

tively. For these parameters, the relative thermal

conductivities of the shell and core materials are eks ¼ 4:4

and ekc ¼ 0:04, respectively.

To satisfy the continuity conditions (35b) and (35c), the

contacts between the matrix and the shell and the shell and

the core are defined as ‘‘glued.’’ Thermal element used in

the analysis is ‘‘Solid87-10 node tetrahedral thermal solid,’’

that is well suited for meshing curved geometries. Solid87

has one degree of freedom, which is temperature, at each

node. Boundary conditions are constant temperature on the

two opposite surfaces of the finite element model orthog-

onal the unit vector e3 in Fig. 2. On the remaining four

sides, orthogonal to the unit vectors e1 and e2, heat flux is

set at zero. The solution is run in a single step. The total

number of elements in the finite element model is between

128,669 and 395,030 depending upon the shell thickness

and volume fractions. A larger number of elements were

used in geometries comprising thinner shells. The number

of elements was chosen to guarantee a fully converged

solution.

Finite element analysis results provides only the tem-

perature distribution within the unit cell. Therefore, a

Matlab routine was developed to postprocess the data and

to compute the relative effective conductivity from mesh

and nodal temperatures. The FEA results provide the

temperature distribution in the model. In order to extract

the relative effective conductivity through the FEA

according to Eq. 38, numerical integration over the inner

and outer surfaces of the shell are required. Nodes on the

inner and outer surfaces of the shell along with the corre-

sponding elements are identified from the mesh file of

ANSYS. The associated nodal temperatures are identified

from the results file.

Discussion

The FEA results for the nodal temperatures are shown in

Fig. 4a for a particulate composite with particles of relative

wall thickness t/a = 0.025 and relative outer radius

a = 0.3. It can be observed that the temperature in the

matrix increases significantly in the vicinity of the inclu-

sion, and remains almost unaltered inside the core. The

Fig. 4 The variation in the

temperature within the a
composite, b matrix, c
microballoon shell, and d air

core. The figures represent one

quarter of the geometry
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variation in the temperature within the matrix, the shell,

and the core are displayed in Fig. 4b, c, and d, respectively.

The temperature values obtained from the FEA are used in

estimating the relative thermal conductivity of the com-

posite as explained in the section above.

The thermal conductivity values calculated for com-

posites containing thin hollow particles of relative

thickness t/a = 0.025 and t/a = 0.05 in the entire range of

0 \ a \ 0.5 using the proposed model are compared with

the Hashin–Shtrikman bounds in equation (7) in Fig. 5a

and b, respectively. Reported modeling results refer to the

closed-form solution (32), that is truncated at the a10, and

to its approximation for thin shells in Eq. 33.

As illustrated through Fig. 5, the theoretical values are

within the bounds. The approximate solution in Eq. 33 is

superimposed to the closed-form solution in Eq. 32 for

very thin shells, that is, for t/a \ 0.025. The approximate

solution shows instead a small departure from the closed-

form solution in Eq. 32 for moderately thin shells, that is,

for 0.025 \ t/a \ 0.05, only for a [ 0.4. The dimension-

less parameter a serves as a means to determine the volume

fraction of microballoons in the composite material. For

example, at the values of a = 0.1, 0.3 and 0.499 the vol-

ume fraction of microballoons in the composite is 0.42%,

11.31%, and 52.05%, respectively. Hence, the approximate

solution can be used to obtain accurate estimates of thermal

conductivity of composites containing\30% by volume of

moderately thin-walled microballoons with t/a \ 0.05. The

computed values of relative thermal conductivity remains

within the Hashin–Shtrikman bounds for the entire range of

shell thickness.

As illustrated in Fig. 5, the closed-form solution (32) is

relatively close to the upper bound, while it is well sepa-

rated from the lower bound. This is due to the relevant

difference between the thermal conductivities of the

materials comprising the unit cell, specifically to the low

relative thermal conductivity of the core material.

Once the validity of the solutions against the Hashin–

Shtrikman bounds is confirmed, the general trends in the

relative thermal conductivity values are observed. The

thermal conductivity values for various microballoons’

wall thickness computed using Eq. 32 are compared with

FEA results in Fig. 6a. It can be observed that the results

obtained from both methods agree with each other, vali-

dating the theoretical results. Figure 6b compares the FEA

results to the forecasts of the approximate solution in

Eq. 33. In accordance with Fig. 5, the thin shell approxi-

mation provides good predictions for shells of relative

thickness \5%. As the wall thickness increases, the

approximate solution becomes less unreliable. However, in

practical conditions, thin shells are generally preferred in

synthesizing hollow particle filled composites to limit the

structural density. The approximate solution in Eq. 33 can

be useful in developing differential models well suited to

study random dispersion of thin-walled hollow particles in

a wide volume fraction range [29, 30].

The overall thermal characteristics of the particulate

composite can be tailored through the selection of con-

stituent materials, volume fractions of inclusions and

thickness of microballoons. In the considered sample case,

the thermal conductivity of the microballoon is 4.4 times

higher than the matrix material, hence, microballoon

becomes an effective channel of heat transfer within the

unit cell. In such a case, the wall thickness of microballoon

plays an important role in determining the overall thermal

conductivity of the specimen. However, depending on the

design requirements of the application, thermal properties

of hollow particle filled composites can be optimally

tailored.
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a
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0.2
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0.6

0.8
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Fig. 5 Comparison between relative thermal conductivity computed

using Eqs. 32 (solid line) and 33 (dotted-dashed line) and Hashin–

Shtrikman bounds (dashed lines) for a t/a = 0.025 and b t/a = 0.05
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Conclusions

An analytical model to predict the thermal conductivity of

particulate composites is developed in this study using

homogenization techniques. The model, which builds on

the framework proposed in [32] for solid particle filled

composites, is applicable to composites containing solid or

hollow spherical particles in a matrix material. The model is

validated with FEA results for vinyl ester matrix syntactic

foams containing glass microballoons. It is observed that

the thermal conductivity values predicted by the model

match closely with the FEA results. A simplified approxi-

mation of the model suitable for practical design is also

presented. The approximate solution is successful in pre-

dicting the thermal conductivity of composites containing

thin-walled microballoons in volume up to 30%. The results

show that the thermal conductivity of syntactic foams is

highly sensitive to the microballoon wall thickness.

The predictive capabilities are expected to result in

better tailoring of syntactic foams, and particulate com-

posites in general, for a diverse set of applications

including space structures.

Acknowledgements This work is supported by the Office of Naval

Research grant N00014-07-1-0419 with Dr. Y.D.S. Rajapakse as the

Program Manager and by the National Science Foundation Grant

CBET-0619193.

Appendix A: solutions to the Laplace equation

The functions un and vn are defined in terms of the spher-

ical harmonics as

unðyÞ ¼
a

q

� �lþ1

Ynðh;/Þ ð39aÞ

vnðyÞ ¼
q
a

� �l

Ynðh;/Þ ð39bÞ

The spherical harmonics are defined by

Yemlðh;/Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� dm;0

2p

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1

2

ðl� mÞ!
ðlþ mÞ!

s

Pm
l ðcos hÞ cosðm/Þ

ð40aÞ

Yomlðh;/Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� dm;0

2p

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1

2

ðl� mÞ!
ðlþ mÞ!

s

Pm
l ðcos hÞ sinðm/Þ

ð40bÞ

where Pl
m denotes the Associated Legendre functions. The

spherical harmonics are orthonormal on the unit sphere,

that is
Z 2p

0

Z p

0

YrmlYr0m0l0 sin h dh d/ ¼ dr;r0dl;l0dm;m0 ð41Þ

We note that (40a) is an even function of / while (40b) is

an odd function of /. We also note if l is an odd integer and

m is an even integer then (40a) is an odd function of cos h.

The partial derivatives of the basis functions un and vn

with respect to the radial coordinate q are

ounðyÞ
oq

¼ � lþ 1

a

a

q

� �lþ2

Ynðh;/Þ ð42aÞ

ovnðyÞ
oq

¼ l

a

q
a

� �ðl�1Þ
Ynðh;/Þ ð42bÞ
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